Пифагор (видео)

Пифагор Самосский (др.-греч. Πυθαγόρας ὁ Σάμιος, лат. Pythagoras, «пифийский вещатель»[2]; 570—490 гг. до н. э.) — древнегреческий философ, математик и мистик, создатель религиозно-философской школы пифагорейцев.

Дата рождения: около 570 до н. э.
Место рождения: Сидон или Самос
Дата смерти: около 490 до н. э.
Место смерти: Метапонт (Италия)
Школа/традиция: Пифагореизм
Направление: Западная Философия
Период: Древнегреческая философия
Основные интересы: философия, математика, музыкальная гармония, этика, политика
Значительные идеи: Музыка сфер, Пифагорейский строй, Теорема Пифагора
Оказавшие влияние: Фалес Милетский, Анаксимандр, Зороастр
Испытавшие влияние: Филолай, Алкмеон Кротонский, Парменид, Платон, Евклид, Эмпедокл, Гиппас, Кеплер


Пифагор   


Историю жизни Пифагора трудно отделить от легенд, представляющих его в качестве совершенного мудреца и великого учёного, посвящённого во все таинства греков и варваров. Ещё Геродот называл его «величайшим эллинским мудрецом». Основными источниками по жизни и учению Пифагора являются сочинения философа-неоплатоника Ямвлиха (242—306 гг.) «О Пифагоровой жизни»; Порфирия (234—305 гг.) «Жизнь Пифагора»; Диогена Лаэртского (200—250 гг.) кн. 8, «Пифагор». Эти авторы опирались на сочинения более ранних авторов, из которых следует отметить ученика Аристотеля Аристоксена (370—300 гг. до н. э.) родом из Тарента, где сильны были позиции пифагорейцев. Таким образом, самые ранние известные источники об учении Пифагора появились лишь 200 лет спустя после его смерти. Сам Пифагор не оставил сочинений, и все сведения о нём и его учении основываются на трудах его последователей, не всегда беспристрастных.

Родителями Пифагора были Мнесарх и Партенида с острова Самос. Мнесарх был камнерезом (D. L.); по словам же Порфирия он был богатым купцом из Тира, получившим самосское гражданство за раздачу хлеба в неурожайный год. Первая версия предпочтительнее, так как Павсаний приводит генеалогию Пифагора по мужской линии от Гиппаса из пелопоннесского Флиунта, бежавшего на Самос и ставшего прадедом Пифагора. Партенида, позднее переименованная мужем в Пифаиду, происходила из знатного рода Анкея, основателя греческой колонии на Самосе.

Рождение ребёнка будто бы предсказала Пифия в Дельфах, потому Пифагор и получил своё имя, которое значит «тот, о ком объявила Пифия». В частности, Пифия сообщила Мнесарху, что Пифагор принесёт столько пользы и добра людям, сколько не приносил и не принесёт в будущем никто другой. Поэтому, на радостях, Мнесарх дал жене новое имя Пифаида, а ребёнку — Пифагор. Пифаида сопровождала мужа в его поездках, и Пифагор родился в Сидоне Финикийском (по Ямвлиху) примерно в 570 до н. э. С ранних лет он обнаружил необыкновенную одарённость (также по Ямвлиху).

По словам античных авторов, Пифагор встретился чуть ли не со всеми известными мудрецами той эпохи, греками, персами, халдеями, египтянами, впитал в себя всё накопленное человечеством знание. В популярной литературе иногда приписывают Пифагору Олимпийскую победу в боксе, путая Пифагора-философа с его тёзкой (Пифагором, сыном Кратета с Самоса), который одержал свою победу на 48-х Играх за 18 лет до рождения знаменитого философа.

В юном возрасте Пифагор отправился в Египет, чтобы набраться мудрости и тайных знаний у египетских жрецов. Диоген и Порфирий пишут, что самосский тиран Поликрат снабдил Пифагора рекомендательным письмом к фараону Амасису, благодаря чему он был допущен к обучению и посвящён не только в египетские достижения медицины и математики, но и в таинства, запретные для прочих чужеземцев.

Ямвлих пишет, что Пифагор в 18-летнем возрасте покинул родной остров и, объехав мудрецов в разных краях света, добрался до Египта, где пробыл 22 года, пока его не увёл в Вавилон в числе пленников персидский царь Камбиз, завоевавший Египет в 525 до н. э. В Вавилоне Пифагор пробыл ещё 12 лет, общаясь с магами, пока наконец не смог вернуться на Самос в 56-летнем возрасте, где соотечественники признали его мудрым человеком.

По Порфирию, Пифагор покинул Самос из-за несогласия с тиранической властью Поликрата в 40-летнем возрасте. Так как эти сведения основываются на словах Аристоксена, источника IV века до н. э., то считаются относительно достоверными. Поликрат пришёл к власти в 535 до н. э., отсюда дата рождения Пифагора оценивается в 570 до н. э., если допустить, что он уехал в Италию в 530 до н. э. Ямвлих сообщает, что Пифагор переехал в Италию в 62-ю Олимпиаду, то есть в 532—529 гг. до н. э. Эти сведения хорошо согласуются с Порфирием, но полностью противоречат легенде самого Ямвлиха (вернее, одного из его источников) о вавилонском пленении Пифагора. Точно неизвестно, посещал ли Пифагор Египет, Вавилон или Финикию, где набрался, по легендам, восточной мудрости. Диоген Лаэртский цитирует Аристоксена, который говорил, что учение своё, по крайней мере что касается наставлений по образу жизни, Пифагор воспринял от жрицы Фемистоклеи Дельфийской, то есть в местах не столь отдалённых для греков.

«Теорема Пифагора»

«Теорема Пифагора» одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника: сумма квадратов длин катетов равна квадрату длины гипотенузы.

Соотношение в том или ином виде предположительно было известно различным древним цивилизациям задолго до нашей эры; первое геометрическое доказательство приписывается Пифагору. Утверждение появляется как Предложение 47 в «Началах» Евклида[⇨].

Также может быть выражена как геометрический факт о том, что площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Верно и обратное утверждение[⇨]: треугольник, сумма квадратов длин двух сторон которого равна квадрату длины третьей стороны, является прямоугольным.



теорема пифагора

Теориема Пифагора. История

По мнению историка математики Морица Кантора в Древнем Египте во времена царя Аменемхета I (около XXIII век до н. э.) было известно о прямоугольном треугольнике со сторонами 3, 4, 5 — его использовали гарпедонапты — «натягиватели верёвок». В древневавилонском тексте, относимом ко временам Хаммурапи (XX век до н. э.), приведено приближённое вычисление гипотенузы. По мнению Ван-дер-Вардена, очень вероятно, что соотношение в общем виде было известно в Вавилоне уже около XVIII века до н. э.

В древнекитайской книге «Чжоу би суань цзин», относимой к периоду V—III веков до н. э., приводится треугольник со сторонами 3, 4 и 5, притом изображение можно трактовать как графическое обоснование соотношения теоремы. В китайском сборнике задач «Математика в девяти книгах» (X—II веков до н. э.) применению теоремы посвящена отдельная книга.

Общепринято, что доказательство соотношения дано древнегреческим философом Пифагором (570—490 до н. э.). Имеется свидетельство Прокла (412—485 н. э.), что Пифагор использовал алгебраические методы, чтобы находить пифагоровы тройки[⇨], но при этом в течение пяти веков после смерти Пифагора прямых упоминаний о доказательстве его авторства не находится. Однако, когда такие авторы как Плутарх и Цицерон пишут о теореме Пифагора, из содержания следует, будто авторство Пифагора общеизвестно и несомненно. Существует предание, сообщённое Диогеном Лаэртским, согласно которому Пифагор якобы отпраздновал открытие своей теоремы гигантским пиром, заклав на радостях сотню быков.

Приблизительно в 400 году до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Около в 300 года до н. э. в «Началах» Евклида появилось старейшее аксиоматическое доказательство теоремы Пифагора.

Пифагор

Основная формулировка содержит алгебраические действия — в прямоугольном треугольнике, длины катетов которого равны а и b, а длина гипотенузы — с, выполнено соотношение:

а2 + b2 = c2
Здесь a2 и b2 – катеты, c2 – гипотенуза.

Пифагор теоремаси

Возможна и эквивалентная геометрическая формулировка, прибегающая к понятию площади фигуры: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. В таком виде теорема сформулирована в Началах Евклида. Обратная теорема Пифагора — утверждение о прямоугольности всякого треугольника, длины сторон которого связаны соотношением а2 + b2 = c2 Как следствие, для всякой тройки положительных чисел а b и с такой,
что а2 + b2 = c2, существует прямоугольный треугольник с катетами а и b и гипотенузой с

Подготовил: Шукуров Шахзод.


Использованная литература:

1. Пифагор (Материал из Википедии — свободной энциклопедии)
2. Знаете ли вы? 10 великих математиков.
3. Пифагор (образовательный портал)
4. Pifagor teoremasi
5. Mashxur shaxslar — Pifagor
6. Pifagor teoremasi (Vikipediya, ochiq ensiklopediya)

 

Подписывайтесь на наш канал в Telegram! — @idumuz

Присоединяйтесь к нашей группе в Facebook

🔥1.1 K раз просмотрено

Добавить комментарий

55863853